
Effective Teaching of Theory of Computation

Objective

The aim of this module is to help teachers in colleges/universities (participants) improve their
teaching of the Theory of Computation (ToC) course as per the AICTE ToC course
curriculum (Given in Appendix I towards the end of this document). The goal of this course is
to help the participants achieve the following objectives:

● Have a clearer understanding of the importance of this course.
● Get a better understanding of the course syllabus and concepts.
● Develop meaningful course material for their courses such as assignments, exams,

etc.
● Receive feedback on assignments and course resources.

Requirement for Module Participants

The participants of this module are expected to do the following:
● Taught this course at least once in their respective college/university.
● Spend at least 5 hours per week on this module.
● Regularly participate in in-class discussions and do the assignments.

Module Syllabus

The ToC module will be divided into three parts. The syllabus for each part will be as follows:

Part 1: Finite Automata and Regular Languages. (Weeks 1-2)

● Motivation for studying automata theory
● Alphabets, formal languages, and problems.
● What are regular languages and automata models for them: Deterministic Finite

automaton, Formal argument of correctness, Regular languages
● Properties of regular languages-Closure, properties, product construction
● Limitations of Automata Non-regularity, Pumping Lemma
● Non-deterministic Finite Automaton, Subset construction, Equivalence with DFAs.
● Regular expressions. Equivalence with regular languages.
● Algorithms for regular languages, Minimization and its algorithm.

Part 2: Grammars and Context Free Languages. (Weeks 3-4)

● Grammars and the motivation from language theory.
● Context-free grammars, closure properties. Chomsky Normal Form for CFGs.
● PDAs. Empty-stack vs Final state acceptance conditions. Equivalence of PDAs and

CFGs.
● Limitations of PDA computation, non context-free language. Pumping Lemma for

CFLs.
● Deterministic CFLs and PDAs.



Part 3: Turing Machines and Computability. (Weeks 5-6)

● Modelling computation using Turing Machines. Equivalent models. Church Turing
Hypothesis.

● Decidability and Turing recognizability (i.e., recursive and recursively enumerable).
● Closure properties.
● Undecidability by diagonalization.
● Reductions to show undecidability. Examples of reductions.
● Resource bounded Turing machines & Intro to Complexity. Basic complexity classes.

Time bounded classes: P, NP, EXP.

Meeting Schedule

The module will be taught in an online mode. We will have a lecture once a week on
Wednesdays from 4:30pm to 6:00pm. Additionally there will be a tutorial session on
Saturdays from 4:30pm to 6:00pm.

References

The reference textbooks used in this module will be:
1. Introduction to the Theory of Computation, 3rd edition. Michael Sipser, Cengage

Publications (Low-cost Indian edition available).
2. Introduction to Automata, Theory, Languages and Computation. Third Edition. John

Hopcroft, Rajeev Motwani, Jeffrey D. Ullmann, Pearson Publications (Low-cost Indian
edition available).



Appendix I (AICTE ToC Course Curriculum)

Theory of Computation Course Curriculum

Prerequisites
● Familiarity with basic data structures and algorithm design
● Must have done a Discrete Mathematics course

Essential Learning Objectives:
● Understand models and abstractions: automata as a basic model of computation
● Link between languages, automata, and decision problems.
● How to build new models from old ones: product, union, closure properties.
● Argue about limitations of computational models.
● Understand algebraic formalisms of languages such as regular expressions,

context free grammars.
● Understand algorithms and computability through the lens of Turing machines.
● Existence of unsolvable problems and what that means.
● Relations between the various computational models.

Desirable Learning Outcomes

Module
(appx dur
in wks)

Topics Teaching
Suggestions

Learning outcomes



Module 1:
Finite
Automaton

(4-5 wks)

-Why automata theory?

-Alphabets, formal
languages, and
problems.

-What are regular
languages and automata
models for them:
Deterministic Finite
automaton, Formal
argument of correctness,
Regular languages

-Properties of regular
languages-Closure,
properties, product
construction

-Limitations of Automata
Non-regularity, Pumping
Lemma

-Non-deterministic Finite
Automaton, Subset
construction, Equivalence
with DFAs.

-Regular expressions.
Equivalence with regular
languages.

-Algorithms for regular
languages, Minimization
and its algorithm.

-(suggested)
Myhill-Nerode relations,
Characterization of
regular languages

-Sec 1.1 of T2

-Sec 1.2, 1.5 of T2

-Sec 1.1 of T1

-Sec 1.1 of T1

-Sec 1.4 of T1

-Sec 1.2 of T1

-Sec 1.3 of T1

-Sec 4.3, 4.4 of T2

-Lecture 15,16 of
R1

+applications of
automata to text
search and NLP

+applications of
regular
expressions for
text search in
UNIX.

Advanced
Topics:

F. Familiarity with
notations.

U. Give examples of
languages, regular
languages.

U. Design finite
automata, both
deterministic and
nondeterministic for a
given language.

R. Write formal proof of
correctness of a DFA

U. Give examples of
non-regular languages
and prove that language
is non-regular using
pumping lemma

F. Understand the
difference between
determinism and
nondeterminism

U. Use closure properties
to show non-regularity

U. Design regular
expressions

U. Use the minimization
algorithm to minimize a
given DFA

U. (suggested) Apply
Myhill-Nerode Theorem
to show that a language
is regular or non-regular



- 2DFAs,
Equivalence with
DFAs using
Myhill-Nerode
Relations (Lecture
17,18 of R1)

Module 2:
Grammars,
Context-free
Languages
and machine
models.

(4-5 wks)

-Grammars and the
motivation from language
theory.

-Context-free grammars,
closure properties.
Chomsky Normal Form
for CFGs.

-PDAs. Empty-stack vs
Final state acceptance
conditions. Equivalence
of PDAs and CFGs.

-Limitations of PDA
computation, non
context-free language.
Pumping Lemma for
CFLs.

-Deterministic CFLs and
PDAs.

-(suggested) CYK
Algorithm for parsing of
CFLs.

-Sec 2.1 of T1

-Sec 2.1 of T1

-Sec 2.2 of T1

-Sec 2.3 of T1

-Sec 2.4 of T1

-Sec 7.4 of T2

+applications to
parsers and
compilers.

Advanced
Topics:

- Ogden’s Lemma.

U. Design CFGs and
PDAs for CFLs

R. Prove correctness of
CFGs

F. Understand that
regular languages are a
subset of CFLs.

R. Prove equivalence of
CFGs and PDAs

U. Argue a language is
non-CFL using pumping
lemma

F. Familiarity with DPDAs

U.(suggested)
Construction of DPDAs

U. (suggested) Parsing
using CYK algorithm



Module 3:

Turing
machines
and
Computabilit
y,

(4-5 wks)

-Modeling computation
using Turing Machines.
Equivalent models.
Church Turing
Hypothesis.

-Decidability and Turing
recognizability (i.e.,
recursive and recursively
enumerable). Closure
properties.

-Undecidability by
diagonalization.

-Reductions to show
undecidability. Examples
of reductions.

-Resource bounded
Turing machines & Intro
to Complexity. Basic
complexity classes. Time
bounded classes: P, NP,
EXP.

-(suggested) Post’s
correspondence problem
and other undecidable
problems

-(suggested) Polytime
reductions,
NP-completeness,
Cook-Levin Theorem
without proof

-Sec 3.1, 3.2, 3.3
of T1

-Sec 4.1 of T1

-Sec 4.2 of T1

-Sec 9.3 of T2.
Sec 5.1, 5.3 of T1.

-Sec 7.1 of T1

-Sec 5.2 of T1

-Sec 7.3, 7.4, 7.5

Advanced
Topics:

- Rice’s Theorem

- Space bounded
computations and
complexity,
PSPACE

F. Understand relation
between the various
classes such as
decidable, Turing
recognizable., co-Turing
recognizable.

F. Give examples of
decidable languages,
undecidable languages,
Turing recognizable
languages.

U. Prove a language is
undecidable by reduction
from a known
undecidable problem

F. Relation between basic
complexity classes

F. (suggested) Scenarios
in which the reductions
are used

R. (suggested) Proving
languages are
NP-complete using
reductions

Notations:
● Topic Categorization:
Compulsory - Topics that should be covered.
Suggested - Optional topics that the instructor can choose from given availability of

time.
Advanced - Advanced topics in each module that an instructor can teach depending

on the interest of the class.



● + indicates applications that could be mentioned in the class.

● Learning Outcome Categorization:
Familiarity - Student should be able to identify and comprehend what the topic is
about. This corresponds to the cognitive levels of knowledge and comprehension of
Bloom's taxonomy (see e.g., https://en.wikipedia.org/wiki/Bloom's_taxonomy).
Usability - Student should be able to understand how a particular idea/topic can be
used, to solve problems, design examples, etc. This corresponds to the cognitive
levels of application and synthesis of Bloom's taxonomy.
Reasoning - Student should have a deeper understanding of a particular concept and
why it works. This corresponds to the cognitive levels of analysis and synthesis of
Bloom's taxonomy.

Nature of lab / assignment / practice / tutorial:

1. Make assignments using the books. To test:

- what was done in the class

- whether the student can think and apply the concepts.

2. Tutorials: Weekly problem-solving sessions.

Suggested textbooks:
T1. Introduction to the Theory of Computation, 3rd edition. Michael Sipser, Cengage

Publications (Low-cost Indian edition available).
T2. Introduction to Automata, Theory, Languages and Computation. Third Edition.

John Hopcroft, Rajeev Motwani, Jeffrey D. Ullmann, Pearson Publications (Low-cost Indian
edition available).

Additional Reference Material:
R1. Automata and Computability, Dexter C. Kozen. Part of the Undergraduate Texts

in Computer Science book series (UTCS), Springer.
R2. Elements of the Theory of Computation, 2nd edition. Harry Lewis, Christos

Papadimitriou, Prentice Hall.

https://en.wikipedia.org/wiki/Bloom's_taxonomy)

